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1 Introduction

• We work over number fields K

• A curve C/K is a smooth projective algebraic variety over K of dimension 1. Its
genus is the dimension of H0(C,Ω1

C)

• We are interested in the set C(K). There is a well-known trichotomy:

1. if C has genus 0, then C(K) is either empty or infinite. In the latter case there
is an isomorphism C ∼= P1

K .

2. if C has genus 1, then C(K) is either empty or is a finitely generated abelian
group (Mordell-Weil theorem for elliptic curves).

3. if C has genus at least 2, then C(K) is finite (Faltings, Vojta, Bombieri)

• Given C/K, there is a K-algebraic variety (in fact, an abelian variety) J := Jac(C),
given by the identity component of the Picard scheme of C, that is a moduli space
for degree-0 line bundles on C (i.e. degree 0 divisors modulo linear equivalence). By
the general Mordell-Weil theorem, J(K) is again a finitely generated abelian group.

• If P is any rational point on C, then the map

C(K) → J(K)
Q 7→ [Q− P ]

is an embedding.

• An elliptic curve is canonically isomorphic to its own Jacobian via the embedding
Q 7→ [Q−O], where O is the origin of the group law.

• The purpose of this note is to

1. Define the Coleman integral, both for Jacobians and for affinoid (rigid) spaces;

2. Prove the Chabauty-Coleman theorem:

Theorem 1.1. Let C/K be a curve of genus g. Suppose that the rank r of J(K)
is strictly smaller than g: then C(K) is finite.
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2 Integrating on Jacobians

In the previous set-up (C a curve over a number field K with Jacobian J), let p be a place
of K. The purpose of this section is to construct an integration map

H0(J,Ω1
J)× J(Kp) → Kp

(ω, P ) 7→
∫ P

ω

that satisfies:

1. Kp-linearity in ω;

2. additivity in P :
∫ P+Q

ω =
∫ P

ω +
∫ Q

ω

3. non-degeneracy modulo torsion:
∫ P

ω = 0 for all ω ∈ H0(J,Ω1
J) if and only if P is

torsion.

Remark 2.1. In fact, the construction goes through for any abelian variety over a p-adic
field.

Lemma 2.2. Let Cot(J) be the cotangent space to J at the origin. The evaluation map

ev : H0(J,Ω1
J) → Cot(J)

ω 7→ ω(0)

is an isomorphism.

Proof. The map P 7→ τ ∗Pω (from J to Cot(J)) is algebraic. Since J is complete and Cot(J)
is affine, it must be constant. This proves that any differential form is translation invariant,
so ev is injective. It is also surjective, for example because the two spaces have the same
dimension, or because any differential form in 0 can be extended to a translation-invariant
differential form.

Lemma 2.3. For any ω ∈ H0(J,Ω1
J) there exists a unique analytic map λω : J(Kp)→ Kp

such that dλω = ω, λω(0) = 0, and λ : J(Kp)→ Kp is a homomorphism.

Proof. Write ω(0) =
∑
Fidzi for some Fi ∈ Kp[[z1, . . . , zg]]. By an obvious analogue to

the Poincaré lemma, there exists G ∈ Kp[[z1, . . . , zg]] such that dG = ω, and G converges
on some open ball B. Without loss of generality1, we can assume that B is an (open)
subgroup of J(Kp). By compactness, (J(Kp) : B) =: N is finite2, and we can set

λω(P ) =
1

N
G(NP ).

1a theorem of Mattuck [Mat55] says that J(Kp) is isomorphic (as a topological group) to Og
Kp
×T with

T finite. In particular, the images in J(Kp) of the sets (pjOKp
)g form a basis of neghbourhood around 0

consisting of open subgroups.
2this number should be thought of as a large power of p; however, due to the possible presence of

torsion, it is not true in general that N is exactly a power of p.
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One checks that dλω = ω: this is clear on B, and by translation-invariance it is then true
on all of J .3

To show that λω is a homomorphism, notice that (at least when restricted to B) the

map
∫ b
a
ω := λω(b)−λω(a) has all the formal properties of integration (by definition), hence

for a, b ∈ B such that a+ b ∈ B (which is automatic, because B is a subgroup) we have

λω(a+ b) =

∫ a+b

0

ω =

∫ a

0

ω +

∫ a+b

a

ω

=

∫ a

0

ω +

∫ b

0

τ ∗aω = λω(a) + λω(b).

This easily implies that λω is a homomorphism.
Finally, uniqueness follows from local uniqueness at zero combined with the requirement

that λω be a homomorphism.

Definition 2.4. We set
∫ P

ω = λω(P ).

Proposition 2.5. This definition satisfies conditions (1)-(3) in the definition of the Cole-
man integral.

Proof. 1. Let ω1, ω2 be two elements of H0(J,Ω1
J) and λω1 , λω2 be the two associated

homomorphisms. Set λ := λω1 +λω2 : we want to prove that λ = λω1+ω2 . This follows
by uniqueness of λω1+ω2 and linearity of d, since λ(0) = 0, dλ = d(λω1+λω2) = ω1+ω2,
and λ is a homomorphism.

2. Direct consequence of the previous lemma.

3let me do the exercise. The differential of 1
NG(Nx) at a point p is 1

N [N ]∗ ((dG)(Np)) , where [N ]∗ :
(TNpJ)∨ → Tp(J)∨ is the pull-back via the multiplication-by-N map. Now (dG)(Np) = ω(Np) since
dG = ω on B and Np ∈ B, and ω(Np) = τ∗−Np(ω(0)) by translation-invariance, therefore

d

(
1

N
G(Nx)

)
(p) =

1

N
[N ]∗τ∗−Np(ω(0));

moreover, [N ]∗ ◦ (τ−Np)∗ = (τ−Np ◦ [N ])
∗

= ([N ] ◦ τ−p)
∗

= τ∗−p ◦ [N ]∗. Since [N ]∗ is N · Id, we obtain

d

(
1

N
G(Nx)

)
(p) =

1

N
[N ]∗τ∗−Np(ω(0)) =

1

N
τ∗−p ◦ [N ]∗ω(0) =

1

N
τ∗−p(Nω(0)) = τ∗−pω(0) = ω(p),

where in the last step we have again used the translation-invariance of ω. Finally, to see that [N ]∗ is N · Id,
one proceeds by induction: for N = 1 it is clear, and to pass from N to N + 1 we can consider

J
∆−→ J × J (N,1)−−−→ J × J +−→ J.

This reduces the problem to checking that the differential of the sum is indeed the sum, and this is true

by linearity, because J
(id,0)−−−→ J × J +−→ J and J

(0,id)−−−→ J × J +−→ J are both the identity on the tangent
space.
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3. We have
∫ P

ω = 0 for all ω if and only if λω(P ) = 0 for all ω. Denote by Tan J the
tangent space at the origin to J(Kp) and consider the map

ι : J(Kp) → Tan(J)
x 7→ (ω 7→ λω(x)).

We claim that this is a locally injective homomorphism. Linearity is clear, and local
injectivity follows from the fact that the differential at 0 of this map is the identity
(indeed dλω|0 = ω). In particular, ker ι is finite, and hence a subgroup of the group
of torsion points. On the other hand Tan(J) is torsion-free, so Tors J(Kp) is sent to
0 by ι. This proves that ι induces an injective map

J(Kp)/Tors J(Kp) ↪→ Tan(J)

or equivalently a pairing

J(Kp)/Tors J(Kp)× Tan(J)∨ → Kp

which is non-degenerate on the left. Since we have a canonical identification of
Tan(J)∨ with H0 (J(Kp),Ω

1
J) we are done.

3 Chabauty-Coleman

We are ready to prove Theorem 1.1:

Proof. If C(K) is empty there is nothing to prove, so assume that C(K) 6= ∅ and pick
P ∈ C(K). This allows us to embed C(K) in J(K) via Q 7→ [Q− P ].

Let P1, . . . , Pr ∈ J(K) generate a subgroup of rank equal to r = rank J(K) (in other
words, N := (J(K) : 〈P1, . . . , Pr〉) <∞). Consider the Kp-linear subspace R of H0(J,Ω1

J)
given by

R = {ω ∈ H0(J,Ω1
J) :

∫ Pi

ω = 0 ∀i = 1, . . . , r}.

Since H0(J,Ω1
J) is a g-dimensional vector space and

∫ Pi : H0(J,Ω1
J)→ Kp is a linear map,

R is the intersection of r codimension-1 subspaces and therefore has dimension ≥ g−r > 0.
Pick ω ∈ R \ {0} and let Q be a point of C(K). By definition of N we have N [Q− P ] ∈
〈P1, . . . , Pr〉, so we obtain N [Q− P ] =

∑
niPi for certain ni ∈ Z. In particular,

N

∫ [Q−P ]

ω =

∫ N [Q−P ]

ω =

∫ ∑
niPi

ω =
∑

ni

∫ Pi

ω =
∑

ni · 0 = 0,

so that in particular
∫ [Q−P ]

ω = 0. By our construction of the Coleman integral, this means
that there is a nonzero analytic function λω : J(Kp) → Kp that vanishes on [Q − P ], and
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this for every [Q−P ] that belongs to C(K) (seen as a subvariety of J(Kp)). By restriction,
we obtain an analytic function

λω : C(Kp)→ Kp

that vanishes on C(K). This function is nonzero since dλω = ω is nonzero on C (recall
that there is a natural bijection between the differential forms on C and on J). Since the
zeroes of analytic function on a curve are isolated and the curve is compact, there can only
be finitely many of them as desired.

4 Strassman’s theorem; quantitative bounds on the

number of rational points

In this section we prove Strassman’s theorem on the number of zeroes of an analytic
function and use it to establish the following more precise version of the Chabauty-Coleman
theorem:

Theorem 4.1. (Quantitative Chabauty-Coleman) Let C/Q be a nice (=smooth projective)
curve and p ≥ 3 be a prime at which C has good reduction. If rank J(K) < g(C) we have

#C(Q) ≤ #C(Fp) + 2g − 2 +

⌊
2g − 2

p− 2

⌋
.

Example 4.2. Consider the curve (or rather, the unique smooth projective curve birational
to the curve given by the affine model)

C : y2 = x(x− 1)(x− 2)(x− 5)(x− 6)

over Q. One can show that rank J(Q) is 1, and that 7 is a prime of good reduction for C.
Furthermore, C(Q) contains at least 10 points, namely

∞, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120).

On the other hand we have #C(F7) = 8, so by the quantitative version of Chabauty-
Coleman we obtain

#C(Q) ≤ 8 + 2(2− 1) + 0 = 10.

Since we already found ten points this is actually an equality, and we have determined the
set C(Q).

Proof. (of Theorem 4.1) The idea is to count rational points according to their reduction
modulo p. We have

#C(Q) =
∑

P∈C(Fp)

#{P ∈ C(Q) : P ≡ P (mod p)}. (1)

The good reduction assumption implies that J also has good reduction at p; this means
that there exists an abelian variety J over Zp whose generic fiber is J , and also implies that
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the space of Zp-regular differentials H0(J ,Ω1
J ) is a lattice inside H0(J,Ω1

J) (see Section
2.1 of [McC94]). Finally, the special fiber JFp of J is the Jacobian of the curve C/Fp.

Let ω be the differential form constructed during the proof of theorem 1.1. Up to
scaling by a power of p, we can assume that ω is in H0(J ,Ω1

J ) and does not reduce to
0 in H0(JFp ,Ω

1
JFp ). Denote by ω the reduction of ω in H0(JFp ,Ω

1
JFp ), and by vP (ω) the

valuation (=order of vanishing) of ω) at P .

We shall show that every term in the sum (1) is bounded by 1 +vP (ω) + bvP (ω)

p− 2
c. Two

possibilities arise:

• either the set {P ∈ C(Q) : P ≡ P (mod p)} is empty, in which case its order is

certainly bounded by 1 + vP (ω) + bvP (ω)

p− 2
c;

• or {P ∈ C(Q) : P ≡ P (mod p)} 6= ∅, in which case we can fix P ∈ C(Q) that
reduces to P . If P ′ is another point that also reduces to P we have∫ P

ω =

∫ P ′

ω = 0,

and therefore ∫ P−P ′

ω = 0.

Fix a local parameter t around P and write ω =
∑

i≥0 ait
idt; notice that this dif-

ferential form is nonzero, because differential forms on C/Fp and on JFp correspond
bijectively to each other. We obtain

0 =

∫ P−P ′

ω =

∫ t(P ′)

0

∑
i≥0

ait
idt =

∑
i≥0

ai
t(P ′)i+1

i+ 1
.

An application of Strassman’s theorem (see below) implies that the number of solu-

tions to this equation with t(P ′) ∈ pZp is at most 1 + vP (ω) + bvP (ω)

p−2 c (the quantity

d := vP (ω) appears naturally: indeed, d is precisely the first index for which ad is
nonzero modulo p, which is useful to apply Strassman’s theorem).

Therefore we obtain

#C(Q) =
∑

P∈C(Fp)

#{P ∈ C(Q) : P ≡ P (mod p)}

≤
∑

P∈C(Fp)

1 + vP (ω) +

⌊
vP (ω)

p− 2

⌋

≤ #C(Fp) + deg div(ω) +

⌊
deg divω

p− 2

⌋
= #C(Fp) + 2g − 2 +

⌊
2g − 2

p− 2

⌋
.
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Theorem 4.3. (Strassman) Let f =
∑

n≥0 anx
n ∈ Qp[[x]]. Suppose that |an| → 0 as

n→∞ and that f is not identically zero, and let

r := min vp(an), N = N(f) := max{n : vp(an) = r}.

Then the equation f(x) = 0 has at most N solutions in Zp.

Proof. Multiplying by a power of p we can ensure that f ∈ Zp[x] and the minimal valuation
of a coefficient is 0. We proceed by induction on N . If r = 0, then all the an with n > 0
are divisible by p, while a0 is a p-adic unit. It follows that f(x) ≡ a0 ∈ Z×p for all x ∈ Zp,
hence f(x) 6= 0 for all x as claimed.

Now suppose we have proved the statement for some N , and consider the case of N+1.
If f(x) = 0 has no solutions in Zp we are done, so assume there is a solution x0; the case
x0 = 0 is trivial, so assume x0 6= 0. Write

f(x) = (x− x0)g(x).

If we can check that g(x) =
∑
bmx

m satisfies the hypothesis of Strassman’s theorem with
N(g) ≤ N we are done. For all n ≥ 0 we have

an = bn−1 − x0bn,

where by convention bn−1 = 0. The power series g(x) still converges on Zp, so |bn| → 0 as
n→∞. It is clear that

bn = an+1 + x0bn+1

= an+1 + x0(an+2 + x0bn+2)

= · · · =
∑
j≥0

an+1+jx
j
0.

This series converges, because we have

|an+1+jx
j
0| =

|an+1+jx
n+1+j
0 |

|xn+1
0 |

and we know that the general term of f(x), which is |an+1+jx
n+1+j
0 |, tends to 0. It follows

that

|bn| =

∣∣∣∣∣∑
j≥0

an+1+jx
j
0

∣∣∣∣∣ ≤ max
j

∣∣an+1+jx
j
0

∣∣ ≤ max
j
|an+1+j|

In particular, since at is not a unit for any t > N + 1, we have that for m ≥ N + 1

|bm| ≤ max
j
|am+1+j| ≤ max

t≥N+2
|at| < 1,

so every bm with m ≥ N+1 is divisible by p. Since at least one of the bm is a unit (otherwise
we would have g(x) ≡ 0 (mod p), hence f(x) ≡ 0 (mod p) in Zp[x], contradiction) we are
done.
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Incidentally, one has N(g) = N(f) − 1 = N : indeed, using the fact that p | aN+j for
every j ≥ 2 we obtain

bN =
∑
j≥0

aN+1+jx
j
0 = aN+1 +

∑
j≥1

aN+1+jx
j
0 ≡ aN+1 6≡ 0 (mod p).

5 Construction of
∫

in the rigid setting

5.1 Notation

Let K be a p-adic field (finitely generated extension of Qp) with ring of integers R, uni-
formizer π, and quotient field k. For later use, we fix an automorphism σ of K that reduces
to the p-power map on k and extend it to K.

5.2 Affine rigid geometry

The Tate algebra is

Tn := K〈t1, . . . , tn〉 :=

{∑
aIt

I : lim
|I|→∞

|aI | → 0

}
.

It is a very nice ring! For example, we have Weierstrass preparation and division:

Theorem 5.1. A Weierstrass polynomial is f(t1, . . . , tn) = tm1 + tm−11 gm−1(t2, . . . , tm) +
· · ·+ g0(t2, . . . , tm), where each gi is an element of Tn−1 and gi(0, . . . , 0) = 0.

• for any f ∈ Tn such that f(0, . . . , 0) = 0, we have f = uW with u a unit and W a
Weierstrass polynomial.

• given f, g ∈ Tn, there exist q ∈ Tn and r a Weierstrass polynomial such that f =
qg + r.

We also have a version of Noether’s normalization, and therefore the weak Nullstellen-
satz: every maximal ideal is a Galois conjugacy class of geometric points: more formally,

Spm(Tn) = {K − homomorphism ψ : Tn → K}/Gal(K/K)

The maximal spectrum of the Tate algebra is therefore

Spm(Tn) =
{

(z1, . . . , zn) ∈ Kn
: |zi| ≤ 1

}
/Gal(K/K).

To see that points need to have integral coordinates, just notice that if zi ∈ K
×

is non-
integral, then ti − zi = −zi(1− zi−1ti) is a unit in Tn, so it cannot map to zero.

The unit polydisk is Bn := {(z1, . . . , zn) ∈ Kn
: |zi| ≤ 1}. An affinoid algebra is a

K-algebra with a surjective map Tn → A for some n. Prototypical example:

A = T2/(t1t2−1), Spm(A) = {(z1, z2) ∈ B2 : z1z2 = 1} =
{
x ∈ K : |x| = 1

}
/Gal(K/K).
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Remark 5.2. Tn is a Banach algebra with respect to the so-called Gauss norm: for a series
f =

∑
aIx

I , its Gauss norm is ‖f‖ = maxI |aI |. Every affinoid algebra inherits a structure
of Banach algebra (the Gauss norm passes to the quotient because any ideal in the Tate
algebra is topologically closed).

Remark 5.3. The notes http://www.mat.uc.cl/~rmenares/TateAlgebras.pdf contain
proofs for many useful facts concerning Tate algebras.

5.3 Monsky-Washnitzer cohomology

We shall work with the so-called wcfg algebras:

Definition 5.4. 1. The standard weakly complete finitely generated (wcfg) al-
gebra is

T †n =

{∑
aIt

I : aI ∈ R, ∃r > 1 such that lim
|I|→∞

|aI |r|I| = 0

}
.

2. A wcfg algebra is an R-algebra A† with a surjective homomorphism T †n → A†.

3. Given a wcfg algebra A†, its (π-adic) completion is Â := lim←−nA
†/πnA†.

Notice that the Gauss norm on the Tate algebra Tn restricts to a norm on T †n (with
respect to this norm T †n is not complete). We shall need the following theorem, which is a
consequence of the so-called Artin approximation property:

Theorem 5.5. (see [vdP86] and the references therein) The following hold:

• Let ε > 0. Given a diagram of wcfg algebras

A

f
��

B/J Bg
oo

and a morphism û : Â→ B̂ such that f̂ = ĝ ◦ û, there exists a morphism u : A→ B
such that f = g ◦ u and |u− û| ≤ ε.

• Let ε > 0. Given a diagram of wcfg algebras

A

C

f

OO

g
// B

and a morphism û : Â→ B̂ such that ĝ = f̂ ◦ û, there exists a morphism u : A→ B
such that f = g ◦ u and |u− û| ≤ ε.
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5.3.1 Differentials

The modules of differentials associated with A† = T †n /〈f1, . . . , fm〉 are

Ω1
A† :=

⊕
A†dti〈

∂fj
∂ti
dti
∣∣ j = 1, . . . ,m

〉
A†

and
Ωk
A† := ΛkΩ1

A† .

They are projective A†-modules. The de Rham complex Ω•
A† is

0→ Ω0
A† → Ω1

A† → · · · → Ωk
A† .

5.3.2 Cohomology

If if A† is a wcfg algebra then A = A†/π is an honest finitely generated k-algebra.

Definition 5.6. The Monsky-Washnitzer cohomology of A, denoted by HMW (A/K), is the
cohomology of the de Rham complex Ω•

A† ⊗K.

It is a theorem of Berthelot [Ber97] that H i
MW (A/K) is a finite-dimensional K-vector

space for all i.

Theorem 5.7. (Elkik [Elk73], van der Porten [vdP86])

1. Let Ā be a smooth finitely generated k-algebra. There exists a flat wcfg algebra A†

such that Ā = A†/π.

2. Any two such lifts are isomorphic.

3. Any morphism f : A→ B can be lifted to a morphism f † : A† → B†.

4. Any two maps f1, f2 with the same reduction modulo π induce homotopic maps Ω•
A†⊗

K → Ω•
B† ⊗K.

Proof. 1. It suffices to show that there is a smooth lift, and then weakly-complete it.
Existence of the smooth lift is shown in [Elk73].

2. By flatness and the fact that A is smooth, one obtains that A/πnA and B/πnB
are smooth over R/πnR for all n. In particular, there is a projective system of
morphisms Â → B̂. By Artin approximation, there is a morphism i : A → B
which is an isomorphism modulo π. We want to show that it is an isomorphism.
By flatness, A/πA ∼= πnA/πn+1A and B/πB ∼= πnB/πn+1B, hence in particular
ker i ⊆

⋂
n π

nA = (0). As for surjectiveness, see Lemma 5.8 below.

� In [vdP86] it is claimed that surjectivity modulo π is “a consequence of the
Weierstrass theorems”, but no details are given. Any errors in the previous proof (or
in Lemma 5.8 below) are entirely down to me.
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3. Same as 2.

4. We only give a sketch. The idea is to mimic the proof of Poincaré’s lemma: we look
for maps α0, α1 : B〈T 〉† → B† and f : B〈T 〉† → B† such that fi = αi ◦ f . We define
αi by sending T to i. Now

Ωq+1(B〈T 〉†/K) = B〈T 〉† ⊗B Ωq+1(B/K)⊕B〈T 〉†dT ⊗ Ωq(B〈T 〉†/K)

and one defines δq to be 0 on the first summand and

g ⊗ ω 7→
(∫ 1

0

g(t)dt

)
ω

on the second. One then checks

α1,∗ − α0,∗ = dδq−1 + δqd : Ωq(A/K)→ Ωq(B/K).

Morally, we want to define f by a 7→ (1 − T )f0(a) + Tf1(a). Clearly this won’t be
an algebra homomorphism in general.

Set S = pT and define
A → B̂[[S]]/(S2 − pS)

a 7→ f0(a) + f1(a)−f0(a)
p

S.

Now this is an algebra homomorphism, and by (formal) smoothness it lifts to

Â→ B̂[[S]] ⊂ B̂〈T 〉.

By Artin approximation (Theorem 5.5), we obtain the desired map A→ B〈T 〉†.

It follows from Theorem 5.7 that the cohomology of A does not depend on the lift A†;
moreover, A 7→ H1

MW (A/K) is functorial. This Monsky-Washnitzer cohomology is a nice
cohomological theory which (if I understand correctly) later evolved into rigid cohomology.

Lemma 5.8. Let A,B be wcfg algebras and i : A→ B be a map such that i (the reduction
of i modulo π) is surjective. Then i is surjective.

Proof. Wlog A = T †n (just write A as a quotient of some T †n ). For some m ≥ 0, there is a
surjective map f (extending i) from A′ = A〈xn+1, . . . , xn+m〉† to B. Take m minimal: if
m = 0 we are done. Otherwise, since ī is surjective we can find a ∈ A such that xn+m − a
is in the kernel of f̄ . Then we can write xm+n − a = a′ + πr with a′ ∈ ker f , r ∈ A′

(to see this, simply notice that ker f is generated by π and ker f). We now have that
A〈xn+1, . . . , xn+m−1〉† → A′/(a′) is onto (essentially, just keep replacing xm+n with a+ πr:
the series converges because of the π). Since a′ is in the kernel of f , this gives a surjective
map A〈xn+1, . . . , xn+m−1〉† → B, contradicting the minimality of m.
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5.3.3 The lift of Frobenius

The map4

A → A
x 7→ xp

can be lifted to a map A† → A†. This lift can be chosen so as to be σ-linear:

Proposition 5.9. There is a map φ : A† → A† that is σ-linear and satisfies φ(x) ≡ xp

(mod π).

Proof. Consider the algebra B/k which is the same as A as a ring, but for which the

structure map k → B is k
xp−→ k → B = A. The algebra B† which is the same as A† as a

ring, but for which the structure map is R
σ−→ R→ B†, is a lift of B. The map

ϕ : A → B
x 7→ xp

is a homomorphism of k-algebras: indeed it is certainly a homomorphism of rings, and

ϕ(λa) = λpap = λpϕ(a) = λ ·B ϕ(a).

By Theorem 5.7 we obtain that there is a map φ : A† → B† that lifts ϕ. In particular, we
have φ(x) ≡ xp (mod π); moreover,

φ(λ •A† a) = λ •B† φ(a) = σ(λ) •A† φ(a).

The map φ just construced induces by functoriality a σ-linear map

φ : H i
MW (A)→ H i

MW (A/K).

If #k = q = ps, the s-th iterate of x 7→ xp is k-linear, so its lift (by the same proof as
above) induces a linear automorphism φs of H i

MW (A/K).
Concerning the eigenvalues of Frobenius, we have the following deep theorem:

Theorem 5.10. [Chi98] Each eigenvalue of φs acting on H i
MW (A/K) is a q-Weil number5

of integral weight contained in the interval [i, 2i].

4this is always a map of rings in characteristic p... convince yourself of this
5recall that a q-Weil number of weight i is an algebraic number α whose absolute value is qi/2 under

any complex embedding. Here q = ps = #k.
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5.4 Specialization; the algebra of locally analytic functions

Let A† = T †n /I be a wcfg algebra. The completion of A† with respect to the Gauss
norm induced from T †n is the algebra A = Tn/I. We then obtain an affinoid space X =
Spm(A) and a reduction Xk = Spec(A). The geometric points Xgeo of X are the K-linear
homomorphisms A→ K.

There is a reduction map, defined at the level of geometric points by

Xgeo → Xk

(ψ : A→ L ⊂ K) 7→
(
ψ : A/π → OL/πL

)
.

The definition works because (as we have already seen) ψ sends A to OL.

Definition 5.11. A residue disk Ux is the inverse image in Xgeo under the reduction
map of a geometric point x : Spec(k) → Xk. By (smoothness and) Hensel’s lemma, one
sees that Ux is isomorphic to the space of geometric point of a unit polydisk.

Definition 5.12. A K-locally analytic function on X is a map

f : Xgeo → K

such that

• f is Gal(K/K)-equivariant, that is, for any τ ∈ Gal(K/K) we have f(τ(x)) =
τ(f(x));

• on each residue disk, f is defined by a convergent power series.

The K-locally analytic functions on X form a K-algebra Aloc containing A.

There are natural modules of differentials Ω•Aloc
. Next we define an action of φ on points

and functions.

1. On points: given a morphism (ψ : A→ K) ∈ Xgeo, we define

φ(ψ) = σ−1 ◦ ψ ◦ φ

2. On functions:
φ(f)(x) := σ(f(φ(x))

5.5 Construction of the Coleman integral

We can now construct the Coleman integral on an affinoid space:

Theorem 5.13. Let A† be a wcfg algebra. There is a unique K-linear integration map∫
:
(
Ω1
A† ⊗K

)d=0 → Aloc/K

satisfying:

13



1. d ◦
∫

is the canonical map (Ω1
A† ⊗K)d=0 → Ω1

Aloc

2.
∫
◦ d is the canonical map A† ⊗K → Aloc/K

3. φ ◦
∫

=
∫
◦φ.

Proof. Choose forms ω1, . . . , ωr ∈ Ω1
A†⊗K whose images in H1

MW (A) are a basis. It suffices
to integrate the ωi’s: indeed a general 1-form ω will have the form ω =

∑
αiωi + df for

some (A†⊗K)-function f , so the formal properties of integration force
∫
ω =

∑
α
∫
ωi+f .

If ω is the (column) vector of forms ωi, then there exists a matrix M ∈ Mr×r(K) such
that

φω = Mω + dg

for some g ∈ (A† ⊗K)r. Applying
∫

to this equality and using linearity and the fact that
φ and

∫
commute we find

φ

∫
ω = M

∫
ω + g.

Fix a vector of functions Fω representing6
∫
ω: then we have

φFω = MFω + g + c

for some vector of constants c.

Lemma 5.14. The map σ −M : Kr → Kr is bijective.

Proof. By linearity and final-dimensionality of the vector spaces involved, it suffices to
show injectivity. Fix c ∈ Kr and consider the equation

(σ −M)x = c :

rewriting it as σx = Mx+ c and applying σ, one obtains

σ2x = σ(Mx) + σ(c) = σ(M)σ(x) + σ(c) = σ(M)(Mx+ c) + σ(c);

continuing in this way, we arrive at

x = σsx = σs−1(M) · · ·σ(M)Mx+ q,

where q has some (complicated) expression in terms of σ, M , and c. We now notice that
F := σs−1(M) · · · σ(M)M is precisely the matrix of the “linear Frobenius” (i.e. φs) acting
on H1

MW (A/K), so by Theorem 5.10 the matrix (I−F ) is invertible (1 is not an eigenvalue
of F ). Since the equation we are trying to solve is (I − F )x = q, this proves that there is
at most one solution to our original equation (σ −M)x = c.

6integration takes values in functions up to constants: we let Fω be a fixed function in the equivalence
class of

∫
ω. Equivalently, we fix an arbitrary integration constant for each of the ωi’s.
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In particular, there is a vector of constants d such that (σ −M)(d) = −c. Replacing
Fω with Fω + d we can assume c = 0: indeed,

φ(Fω + d)−M(Fω + d) = g + c+ (σ −M)(d) = g + c− c = g,

where we have used the fact that φ acts as σ on constants.
Now since dFω = ω it suffices to determine Fω on a single point in each residue disk:

the reason for this is that on a residue disk the formal integral makes sense by definition
of Ω1

A† , so that Fω and the formal integral of ω might differ at most by a constant. Take
any point x. Then

(φFω)(x) = MFω(x) + g(x),

which gives
σFω(φx) = MFω(x) + g(x).

Since x and φx belong to the same residue disk, the difference Fω(φx) − Fω(x) = e(x) is
uniquely determined by ω (and is found by formal integration). The previous equation can
then be rewritten as

(σ −M)(Fω(x)) = g(x)− σ(e(x)),

which (since σ −M is bijective) uniquely determines Fω(x).
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